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The forces acting on a contour in a plane flow of incompressible 
ideal fluid with a constant vortex have been analyzed by a number of 
authors [1-3]. Mikuta and Novikov studied a circular constant-vortex 
flow, while the authors of [2-4] investigated a uniform flow with a 
transverse velocity gradient. These studies are chiefly concerned with 
flow around bodies in a rotary hydraulic charmel and with wind effects 

under natural conditions. 
Below it is shown that the method of determining the stream func- 

tion of a disturbed circular flow, developed In [l], can be extended 
to any constant-vortex flow, in particular, to a uniform flow with a 
transverse velocity gradient. A formula is obtained for determining 
the hydrodynamic reaction of any constant-vortex flow on a contour. 
A finite analytic expression is derived for the aerodynamic force acting 
on a circular cylinder in a constant-vortex divergent flow. 

We assume on the basis of experimental evidence that a contour 
introduced into a flow with constant vortex ~2 does not affect the dis- 
tribution of the vortex in the flow. The flow over the contour is de- 
scribed by the equation for the stream function ~: 

4 a~"F ~ -  Q ( i )  
Ozc)~. 

with the condition on the contour 

IL : =  cl,nst. (2) 

At a sufficiently great distance from the contour the stream func- 
tion will be virtually the same as the stream function oftheundisturbed 
flow 1,o0, on which the circulation is superimposed, since the disturb- 
ances due to the contour progressively decay. Hence it follows that at 
infinity the stream function r is on the order of 

= ~tt. oq- O(ln I z l ) ,  (3) 

where O(lnJ zl) stands for expressions Increasing as lzl--- | not more 
rapidly than in [ zl. 

The boundary value problem (1)-(3) differs from that considered 
in [1] only with respect to the more general condition at infinity (3). 

As shown in [2], the most general constant-vortex flow can be ob- 
tained by superimposing a circular constant-vortex flow with center 
of rotation at the coordinate origin and a potential flow,* so that 

q ' = - - V ,  ~ z . ~ + ~ ~  (4) 

Here, r176 is the stream function of some potential flow. 
In accordance with 0.)-(4), the potential flow defined by the func- 

tion r is described by the Laplace equation with the following bound- 
ary condition and condition at infinity: 

~o =,/4flz ~ + const on L, 

V ~ = V~ + O(ln I z I )" (5) 

Here, r  is the stream function of the undisturbed potential flow. 
Thus, boundary value problem (1)-(3) reduces to the determination 

of the harmonic function r176 satisfying conditions (5). 
Let us solve this problem by the method proposed in [1]. We rep- 

resent the function r176 in the form of a sum of harmonic functions r  
and r on which we impose the following conditions at infinity: 

�9 (t)----'/df~zz q- eonst on L, ~( t )_  O( [ z I-1), (6) 

~F (~) = 0 on L, ~('~) = T~~ q- O(ln I z I ). (7) 

Then, as it is easy to see, the function 

~ - -  1/4~2z~ + W(~) 4- ~(~) (8) 

will be the solution of problem (1)-(3). 
In order to determine the function ! ,(2) it is possible to use the cir- 

cle theorem and conformal mapping. The function r for the case of 
flow over a Zhukovskii profile was found in [1]. For flow over an el- 
lipse with semiaxes a and b, center at the coordinate origin and semi- 
axis a directed along the x-axis, this function has the form: 

I i c z 
~(t)~_Im w( ) = I m  ( ~ -  ~r'-' ~ - )  

a-Jc-b\ ; _  z + Vz2_c22 c 2 - ~ - b ~ _  , r = - ~ ) .  (9) 

Introducing the complex velocity ~, on the basis of (4) we obtain 

= ~, q_ ~o ( ~ ,  = _ ~hi~).  (10) 

Here, ~* is the complex velocity of the circular constant-vortex 
flow with center of rotation at the coordinate origin, and ~~ is the 
complex velocity of the potential flow defined by functions r  and 
1,(2). 

if the flow over the profile is the result of the superposition of two 
plane steady flows, then in this case the aerodynamic force can be 
regarded as the sum of the aerodynamic forces corresponding to each 
of the superimposed flows and the aerodynamic force due to their mu- 
tual interference R** (i. e. ,  depending on the velocity components 
of both flows), so that 

R = R* + R ~ + R *~ ( i i )  

we determine the aerodynamic force due to the circular constant- 
vortex flow with center of rotation at the coordinate origin and the 
aerodynamic force due to the mutual interference of the superimposed 
flows. 

In accordance with the Chaplygin-Blasius theorem, using (10), we 
have 

2 ~ 8 "S 
(L) (L) 

Using the complex form of the Stokes theorem [i. 2], we obtain 

~ ~ d z = 4 i l l  ~'dS~4iS~e (%=xc+igc) .  
(L) (s) 

Here, S is the area bounded by the contour L, and z c is the position 
of the center of gravity of that area. Consequently, 

"~, =xApfl~S~c.  (12) 

We now find the aerodynamic force due to the interference of the 
superimposed flows: 

1 

(L) L 

Here, w is the complex potential of the irrotatlonal flow. As shown 

in [2], 

(L) (L) ~L) 

*The conclusion has been reformulated in my terminology. 
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Again using the complex form of the Stokes theorem and the first 
of  expressions (5) for r we obtain 

Hence 

Thus, 

2 2 " 
(L) ( s )  

(L) (L) 

R*~ ~d~ --QS~c) " (13) 

eL) 

Denoting the component of the aerodynamic force determined by 
the vorticity of the flow by R ~ on the basis of expressions (11-13) we 
find 

R =  R~ B **.  

(14) 
R~ = # ~ [,~ dz, R** = R* + R*O = 1 pi) ~ z'~ ~ dz. 

-=2- 
(L) (L) 

Assuming the absence of singularities in the flow, we will treat the 
complex velocity ~* as a holomorphic function of z in the exterior 
(with respect to the contour L) part of the z-plane.  Then, in the neigh-  
borhood of an infinitely remote point we have the Laurent series 

m ~ a-n" (15) 
~~ N ~ / +  __ - 7 "  

n~0 n~l 

After integrating over a circle of sufficiently large radius, in order 
to make expansion (t5) correct, we express the components of the aero- 
dynamic force R* and R** in terms of the coefficients of that expamion 

m 

~~ = - -  2:Xp E ana-(n+D' R** = :rp.Q/a_ 2 . (16) 
n~0 

Thus, the principal vector of the fluid pressure forces acting on 
the profile is expressed as follows: 

R = X + i Y = - - ~ x p ( 2  ~ ~n~_(n+x)--ia_2Q). (17) 
n=0 

Setting 

= O, a t  = - -  i X, 

a ~  = ~oo (n  = 0 ) , "  a~  = 0 (n  # :  0 ) ,  

where X = F/2~r is the intensity of the circulation F around the profile 
and ~,~ is the complex velocity of the plane-parallel  flow at infinity, 
we obtain the Zhukovskii theorem. Let us consider certain examples.  

Ellipse in a uniform flow with transverse velocity gradient. Let the 
free-stream velocity distribution in the plane s ~]) have the form: 

u = - ~ n +  u~o, r = 0 .  

Here, U,~ is the velocity of the uniform flow at infinity (~ --~ ,% ~ = 0). 
Then the complex free-stream velocity and its potential part will be, 
respectively, 

~,o ='A~(;- ~) + V~, ~oo~ = ' / ~ i a ;  + u~,. 

In accordance with the  circle theorem [2] the complex velocity 
of  the disturbed potential flow around a circular cylinder of radius r is 

Vf2)5 --~----'" ti ' i~,~__U, z" +~Tr~ (_12_iQ r~ __Uoo/" 

In the more general case of flow over a cylinder when the free- 
stream velocity is directed at an angle a to the x-axis and a circula-  
tion F = 2 ~  around the cylinder is superimposed on the flow, the com-  
plex velocity of the disturbed irrotational flow has the form 

~(~)= + if2e-zi=~ + U e - iz  

i X U~.r o-e~ ~/,, i~r~e ~ia 

Using conformal mapping, we find that the complex velocity of  
the flow around an elliptic cylinder ~ i  z) is related with the complex 
velocity of flow around a circular cylinder ~(z) by the expression 

~(e) _~_~ -(2)  
] /z  i - -  c~ v5 " 

Consequently, the complex velocity for an elliptic cylinder asso- 
ciated with the stream function r has the form 

~ + U~ e -i~ v(2)z = + iQe-'~ia ]/~ - -  c-----~ V ' ~  

- -  ix ~z,,_i~z--__ U .  r2e ia - ~ | i~r4e2i~ 1 
~ ~ V ~  ~ - c~ -"- "-7- ;~ V~-~_  ~ 

We now find the complex velocity ~ )  corresponding to the function 
, ( 0 :  

i~z(t) _ d [w(') (q~ (z))], 
dz 

where, in accordance with the foregoing, 

;'1" -- ] . c ~ 4 

Comequently, for ~ i  I) we obtain 

t c~ (18) 
Vz(t) = - - - ~  iQr2 ~2 Vz~-~~_c2" 

The complex velocity for an elliptic cylinder in the potential part 
of the disturbed flow 

In the neighborhood of an infinitely remote point 

(19) 

where 

7~~ - q- z--~-- . .  , 

a 1 = 1/ei~2e-2iJ- ' a o = Ucoe -i~, 

a_, ~ -- iX, a_2 = (l/aco-e-ia -- r~e in) U ~ .  

Starting from (17), in this case we write 

B = - -  np[2(50~_l -I- 51a~2)--ia_2QJ = 

--  i[p Uc~F + z~p~ U~(a + b) (asin~a + bcosZa)]b in. 

Hence the lift force is 

F = - p UcoF --  ~xp~ Uoo (a + O) (asin2a + b eoso-a). (20) 

If there is no circulation F around the contour, the  result obtained 
coincides with the result of [3]. * In this case setting a = b = r, we find 

F = - -  2pUc~F" , F' = ~ r  2. (21) 

EXpression (21) coincides with the known expression for a circular 
cylinder [3, 4]. If in (20) we set F = 0, b = 0, 0 _< a -< ~r]2, we ob- 
t a l l  the lift force for noncurculatory flow over a plate 

F = - -  p Uocf~za2sino-c~.: (22) 

This force reaches a max imum at a = 7r/2, when the plate is arranged 
perpendicular to the flow. This is also in agreement with the conclu-  
sions of [3]. 

Ellipse in a eitcular constant-vortex flow. Let the center of rota- 
tion be located at the point z 0 = x0 + iy0. Then the velocity compo- 
nents at any point of the undisturbed flow can be represented in the 

* The difference in signs is attributable to the  reversal of the sign rule 

for the vortex ~. 
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form U = -~v(y -- Y0), V = w(x -- x0), where w = 0 / 2  is the angular 
velocity of the flow. 

Hence the complex velocity of the undisturbed flow is 

~o~ = - -  i c ~  - -  ~ o ) .  

Introducing relation (10), we isolate the complex  velocity of the 
potential  part of this flow, 

~ov ~ = iCO~o. 

The case of an elliptic cylinder in a potential  flow with constant 
velocity at infinity has been thoroughly investigated [5]; the complex 
velocity has the form 

Using (18) and (19), we find 

C 2 

~~ =F;~ ~) - -  iflr.0 (z + 1 / ~ ) . 0  l f  z.0 - -  c.0 (23) 

A Laurent expansion of the r ight-hand side of the latter expression 
in the neighborhood of an infinitely remote point yields 

a _  2 ~~ = ac + a_~ + ~ + . . . .  

ao = ~.,o, a_ 1 = - -  i x,  a_ z = 1/4 [ ~ ~  - -  %,0 (a "4- b)~']" 

We now apply Eq. (17), 

R = - -  2 ~ p ( a 0 a _  1 - -  io)a2)  = - -  ipvc ( r  -~ r ' ) ,  (24)  

where v c = - i w z o  is the velocity of the undisturbed flow on the cyl in-  
der axis 

F' = i N  :to) [(a + b) z0 -r (a - -  b) z0] a -~- b 
2 z o 

Setting z0 = iy0, a = b = r, we find 

-~ = ipvc(F + r ' )  (% = ~Yo, F' = f~ar-0). (25) 

This result coincides with the known expression giving the aero-  
dynamic force for a circle [1], when the center of rotation of the flow 
is located on the imaginary axis. 

If we set b = 0, a = c in (24), we obtain an expression for the aero-  
dynamic force acting on a flat plate of length 2c 

R = - ~ p v r  -4- r ' ) ,  r '  : l/~0~ac-0(t + z0 / zo), (26) 

where Vc is the velocity of the undisturbed flow at the  center of the 
plate.  

We determine the circulat ion F from the  condition of finite ve-  
locity at the trail ing edge of the plate.  For this purpose we analyze the 
expression for the complex velocity. On the basis of (10) and (23) we 
find 

i ' t c 4 \ 

Here, U* and V* are the velocity components of the potential  part of 
the undisturbed flow. At an arbitrary value of the circulation F = 2~rX 
and z = • c the velocity has infinite values, which corresponds to flow 
over sharp leading and trailing edges. We now impose on F the condi-  
tion of finite velocity at the trail ing edge (z = c), as required by the 
Zhukovskii-Chaplygin postulate. We then obtain 

r = 2n;( = - -  2 z c ( W  + V-0oc) = noJC(Zo + zo - -  c). 

Substituting the values of F and F '  into the first of expressions 
�9 (26), we find 

R = - -  aOo.0c[ (z0  + r:o) p/~.c + zo) - -  c zo ] .  

Starting from this, we can write 

F a = I/.o ~pto2c 2 [ z 0 ] sin2ct, 

F~+,/g,~ = 2zpto2c [ z 0 ] (1/~ccos-0a + [ z 0 [ sins).  (27) 

Here, ct is the local angle of  at tack at the center of the plate, Fct is 
the component  of the aerodynamic force in the direction of the free-  
stream velocity at the center of the plate,  and Fa+,/2,, the component 
of the aerodynamic force in the direction ct + lr/2. 

As distinct from a potential  flow over a flat plate,  where the angle 
of at tack can always be selected so that the lift force vanishes, in this 
case the aerodynamic force is always nonzero. In fact, it is not possi- 
ble to find an angle such that F a = 0 and F~,~,~/2 = 0 simultaneously. 

This conclusion is fully consistent with that reached in [1]. 
In analyzing expressions (20)-(22) and (24)-(26),  we note that, as 

distinct from a potential  flow, in a constant-vortex flow an aerodynam- 
ic force is observed even in the absence of circulation F.  This force 
is proportional to the  modulus of the  vortex vector. 

Circular cylinder in a constant-vortex divergent flow. Suppose that 
at the center of rotation of a circular constant-vortex flow z = z 0 there 
is a source of strength m located outside a cylinder L of radius r whose 
axis passes through the coordinate origin C. The complex velocity of 
the undisturbed flow and the potential  part of that flow will then take 
the following form: 

~ m i to(~--~o),  ~ooo__ m }-i~o~-o. 
z - -  z 0 z - -  z 0 

Using the circle theorem [2], we can write the complex velocity 
of the corresponding disturbed flow in the form: 

m m m + i Z r e 
~ ~  Z - -  Zo + z - r 2 / zo z + ir + ~ ir 

In this case, as it is easy to see, v~) F_ 0. 
Since there is a singularity in the flow, it is not possible to apply 

Eq. (17) directly. Therefore, in order to calculate the  aerodynamic 
force acting on the cylinder we employ expression (14). 

Locating the source on the  real axis at the point z = z0, from the 
residue theorem we obtain 

1 
~ = 2~pr ( ~  Uc~ - -  ~ - -  Vc-0 ) - -  ir,~cl" , 

Y c = U c -  i V  o k = I Zo [ / r . (28) 

Here, Uc and V c are the velocity components of the undisturbed flow 
on the cylinder axis at the coordinate origin. 

Analyzing (28), we note that, as in the previous examples,  the 
aerodynamic force is nonzero even in the absence of circulation r 
around the cylinder. This force pulls the cylinder toward the source, 
with U c > V e. If the force is directed away from the source, Uc < Vc. 
As k ~ *% i. e . ,  as we approach the conditions of a cylinder in a ho-  
mogeneous flow, this force vanishes. In the latter case, in the pres- 
ence of a circulation F around the cylinder, formula (28) yields Zhu- 
kovsldi's theorem, since as k tends to infinity we obtain R = ipv c r .  

The author thanks V. E. Davidson for his helpful advice. 
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